The Drosophila copper transporter Ctr1C functions in male fertility.

نویسندگان

  • Dominik Steiger
  • Michael Fetchko
  • Alla Vardanyan
  • Lilit Atanesyan
  • Kurt Steiner
  • Michelle L Turski
  • Dennis J Thiele
  • Oleg Georgiev
  • Walter Schaffner
چکیده

Living organisms have evolved intricate systems to harvest trace elements from the environment, to control their intracellular levels, and to ensure adequate delivery to the various organs and cellular compartments. Copper is one of these trace elements. It is at the same time essential for life but also highly toxic, not least because it facilitates the generation of reactive oxygen species. In mammals, copper uptake in the intestine and copper delivery into other organs are mediated by the copper importer Ctr1. Drosophila has three Ctr1 homologs: Ctr1A, Ctr1B, and Ctr1C. Earlier work has shown that Ctr1A is an essential gene that is ubiquitously expressed throughout development, whereas Ctr1B is responsible for efficient copper uptake in the intestine. Here, we characterize the function of Ctr1C and show that it functions as a copper importer in the male germline, specifically in maturing spermatocytes and mature sperm. We further demonstrate that loss of Ctr1C in a Ctr1B mutant background results in progressive loss of male fertility that can be rescued by copper supplementation to the food. These findings hint at a link between copper and male fertility, which might also explain the high Ctr1 expression in mature mammalian spermatozoa. In both mammals and Drosophila, the X chromosome is known to be inactivated in the male germline. In accordance with such a scenario, we provide evidence that in Drosophila, the autosomal Ctr1C gene originated as a retrogene copy of the X-linked Ctr1A, thus maintaining copper delivery during male spermatogenesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Drosophila Ctr1A functions as a copper transporter essential for development.

Copper is an essential trace element required by all aerobic organisms as a cofactor for enzymes involved in normal growth, development, and physiology. Ctr1 proteins are members of a highly conserved family of copper importers responsible for copper uptake across the plasma membrane. Mice lacking Ctr1 die during embryogenesis from widespread developmental defects, demonstrating the need for ad...

متن کامل

Neurotransmitter Transporter-Like: A Male Germline-specific SLC6 Transporter Required for Drosophila Spermiogenesis

The SLC6 class of membrane transporters, known primarily as neurotransmitter transporters, is increasingly appreciated for its roles in nutritional uptake of amino acids and other developmentally specific functions. A Drosophila SLC6 gene, Neurotransmitter transporter-like (Ntl), is expressed only in the male germline. Mobilization of a transposon inserted near the 3' end of the Ntl coding regi...

متن کامل

Syntaxin 5 Is Required for Copper Homeostasis in Drosophila and Mammals

Copper is essential for aerobic life, but many aspects of its cellular uptake and distribution remain to be fully elucidated. A genome-wide screen for copper homeostasis genes in Drosophila melanogaster identified the SNARE gene Syntaxin 5 (Syx5) as playing an important role in copper regulation; flies heterozygous for a null mutation in Syx5 display increased tolerance to high dietary copper. ...

متن کامل

P-42: Concentrations of Zinc, Copper, Iron, lead, and Cadmium in Ram Epididymal Tissue and Their Correlations to Serum Testosterone

Background With the advent of rapid industrialization, several chemicals are released in the air, water and soil. Chemical elements play a crucial role in male reproduction. Heavy metals exposure can adversely affect male fertility and result in severe impairment of testicular functions including germ cell death and inhibition of testicular steroidogenesis. The aim of this study was to investig...

متن کامل

Dispensable, redundant, complementary and cooperative roles of dopamine, octopamine and serotonin in Drosophila melanogaster AUTHORS

To investigate the regulation of Drosophila melanogaster behavior by biogenic amines, we have exploited the broad requirement of the vesicular monoamine transporter (VMAT) for the vesicular storage and exocytotic release of all monoamine neurotransmitters. We used the Drosophila VMAT (dVMAT) null mutant to globally ablate exocytotic amine release, and then restored DVMAT activity in either indi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 285 22  شماره 

صفحات  -

تاریخ انتشار 2010